Stack Measurements

SOURCE EMMISSION MONITORING

Why Monitoring?

- > Process control
- > Regulatory compliance
- > Air quality modeling
- > Develop emission factors
- > Performance of pollution control devices

Fundamentals of Gas Laws:

☐ Boyle's Law:

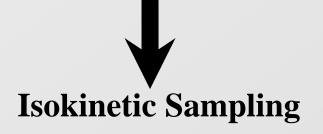
PV = **Constant** (at fixed mass and temperature)

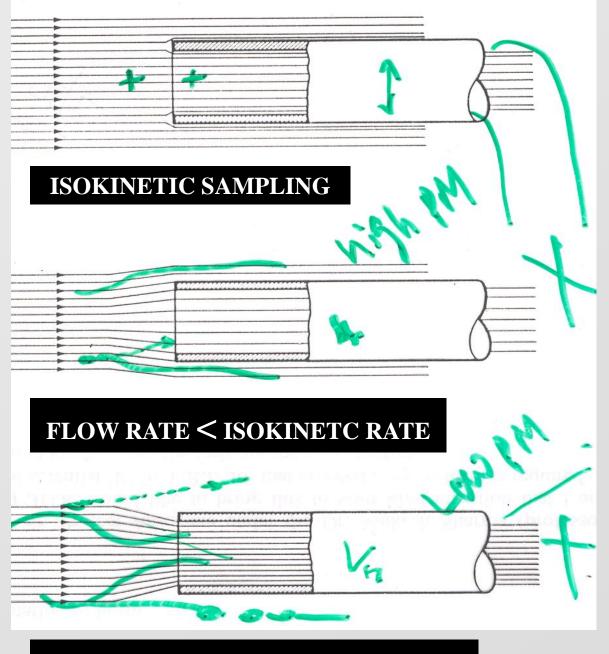
☐ Charles's Law:

V/T = Constant (at constant mass and pressure)

□ Perfect Gas Law:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$


Particulate Sampling: Isokinetic Sampling *WHY?*


Units: ppm, mg/Nm³, μg/m³

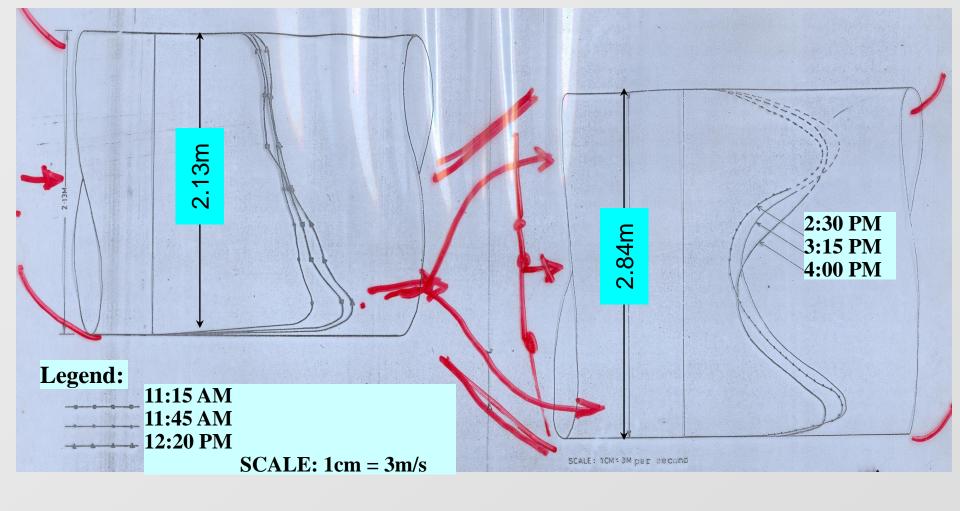
Particulate Inertia

Velocity Measurement

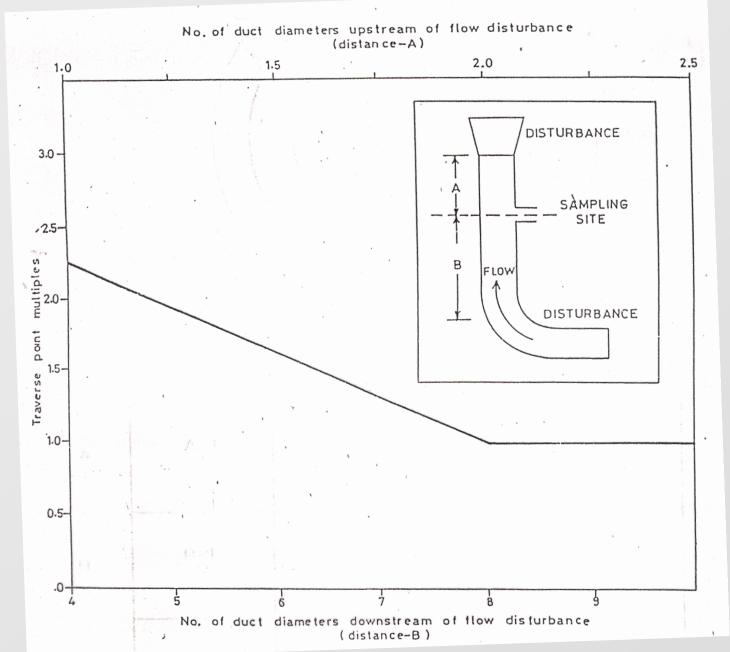
FLOW RATE > ISOKINETC RATE

SAMPLING LOCATIONS

Any source Monitoring requires VELOCITY MEASUREMETNS


Flow in ducts and stacks is fully developed TURBULANT FLOW (Re > 10,000)

But ? Bends, Expansions, Contractions ID & FD Fans and Dampers in Ducts and Stacks cause


- Drastic change in velocity profile
- Variations in Velocity with time

Difficult Situation for Sampling

Spatial Variation in Velocity Profile: A 90° Bend in UP stream of Sampling Port at 3.16 times Equivalent Diameter Spatial Variation in Velocity Profile: A 90° Bend in DN stream and Dampers, Expansion and ID Fan in UP Stream of Sampling Port

Velocity Measurement Pitot Tube

Traverse point multiplier to determine minimum number of traverse points required when $A\!<\!2$ or $B\!<\!8$

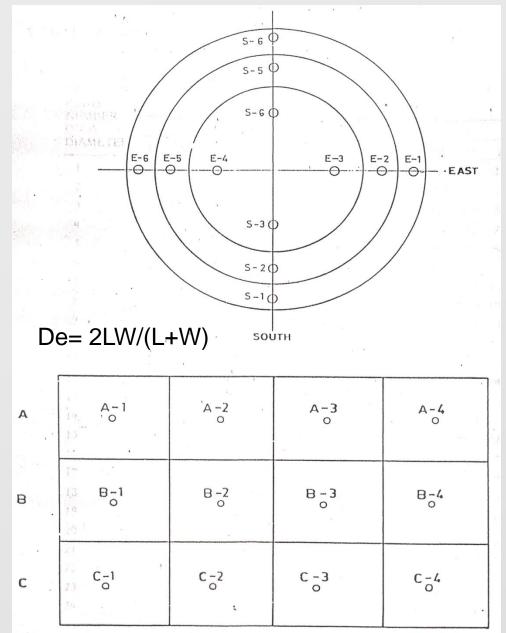
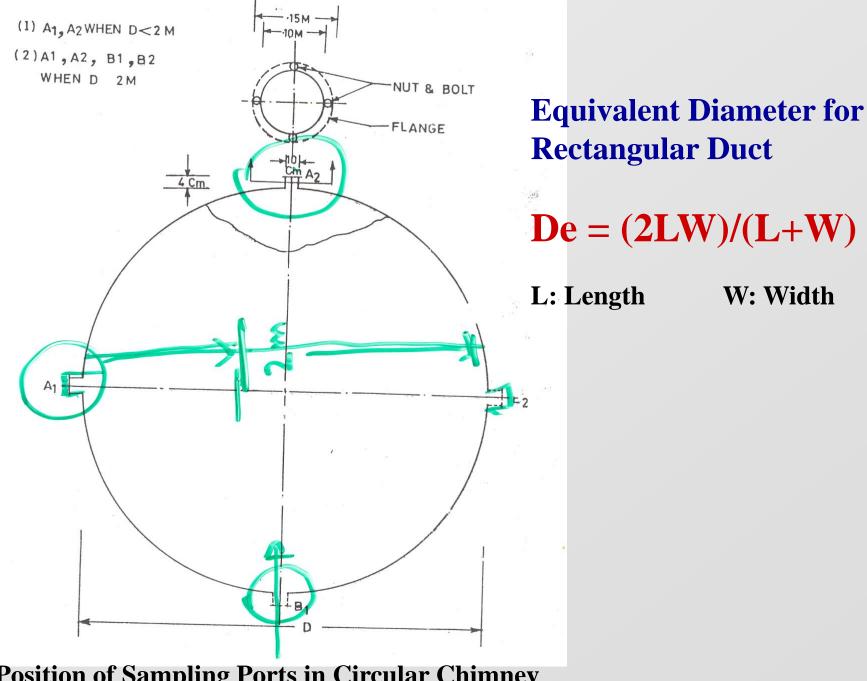
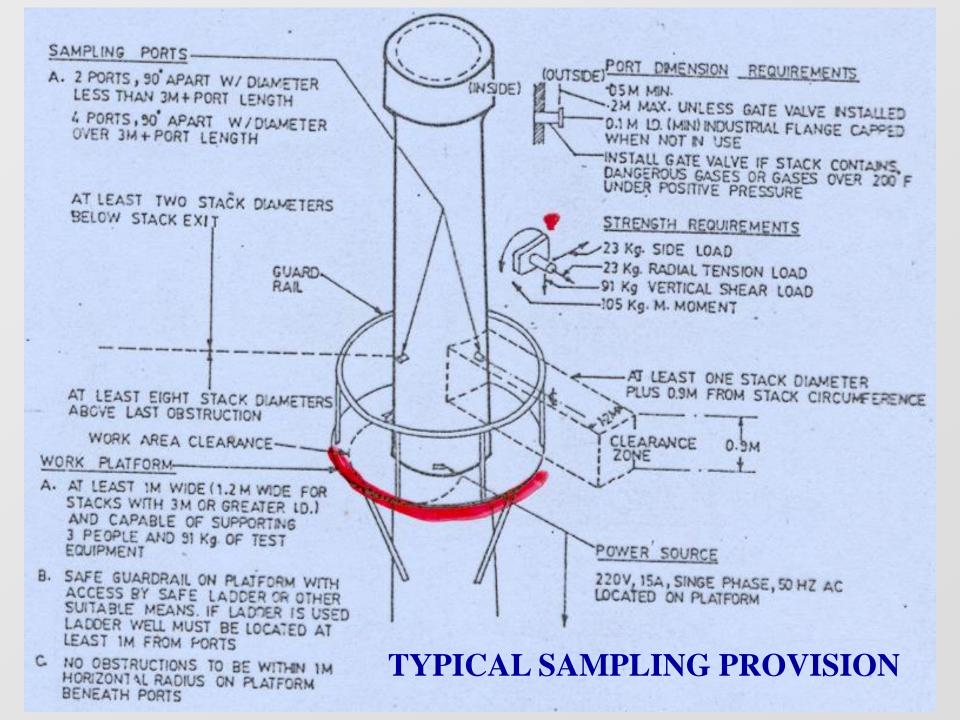
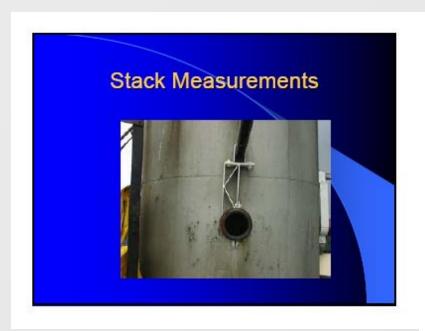

Under no condition shall a sampling point be selected within 3 cm of stack wall.

Table 1 Minimum Required Number of Traverse Points for Sampling Sites Meeting the Specified Criteria

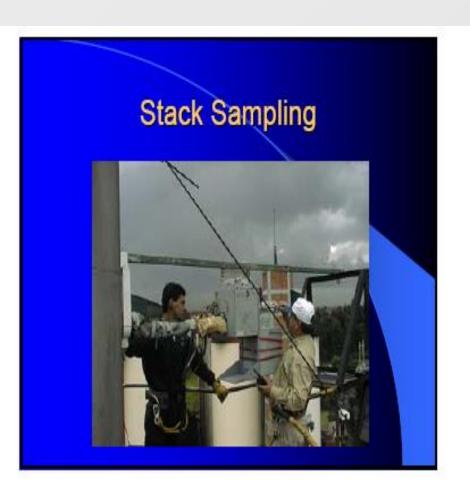

Inside diameter of stack or duct (m)	Number of points				
I.D <= 0.3	4				
0.3 <= I.D <= 0.6	. 8	7			
0.6 <= I.D <= 1.2	12				
1.2 <= I.D <= 2.4	20				
2.4 <= I.D <= 5.0	32				

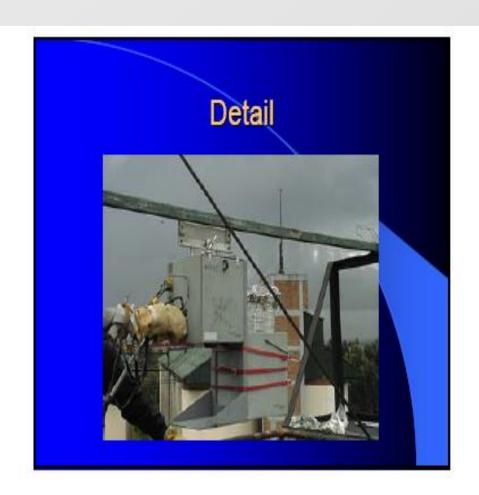
LOCATION OF TRAVERSE POINTS ON DIAMETERS OF CROSS SECTIONS OF CIRCULAR STACKS

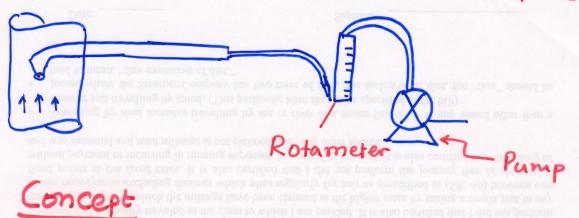

TRAVERSE	PEF	CEN	TOF	STA	CK I	DIAME	ETER	73	OM I	SID	E W	ALL
POINT NUMBER	TO TRAVERSE POINT											
AVO		Nu	umber	of	trav	erse point		s on	a c	dia neter		
DIAMETER	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.3	2.5	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.7	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.5	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
l_r		93.3	70.5	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.3	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.
6			95.6	80.6	65.8	35.5	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.5	36.6	28.3	23.6	20.4	18.0	16.
8				96.7	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.
9					91.8	82.3	73.1	62.5	38.2	30.6	26.1	23.
10	- 1 -				97.5	88.2	79.9	71.7	61.8	38.8	31.5	27.
11	15.1					93.3	85.4	78.0	70.4	61.2	39.3	32.
12						97.9	90.1	83.1	76.4	69.4	60.7	39.
13							94.3	87.5	81.2	75.0	68.5	60.
14	2-12	-	8				98.2	91.5	85.4	79.6	73.9	67.
15	1.9		(A B)					95.1	89.1	83.5	78.2	72.
16			and the same					98.4	92.5	87.1	82.0	77.
17									95.6	90.3	85.4	80.
18	6								98.6	93.3	88.4	83.
19	and the same									96.1	91.3	86.
²⁰ e.g.	For	8 TF		ok do	own	ward	dan	d lo	cate	98.7	94.0	89.
²¹ at 3.3											96.5	
²² % dia		J.O 1	IJ. Ţ ,	02.0	,,,,,	,00	٥.٥,٥	.0.0	,00.		98.9	94.
23 70 UI	a.											96.
24					1				A. and			98.



Locations of Traverse Points on Circular and Rectangular Cross Sections into Twelve equal areas




Position of Sampling Ports in Circular Chimney

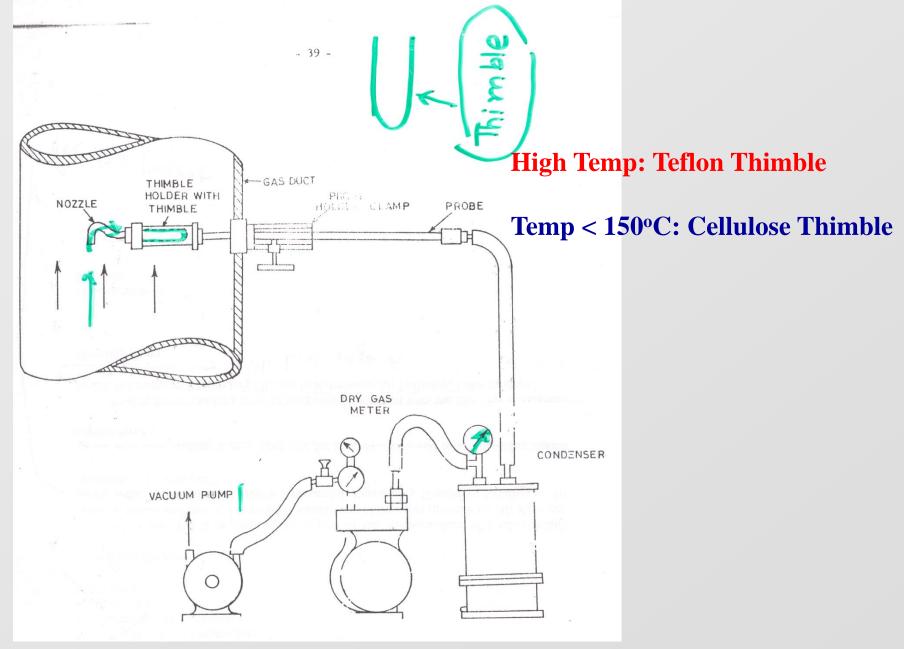


How to ensure ISOKINETIC SAMPLING

Vs = Vn (Vel. in Stack = Vel. at Sampling nozle)

· Adjust the flow rate at rotameter

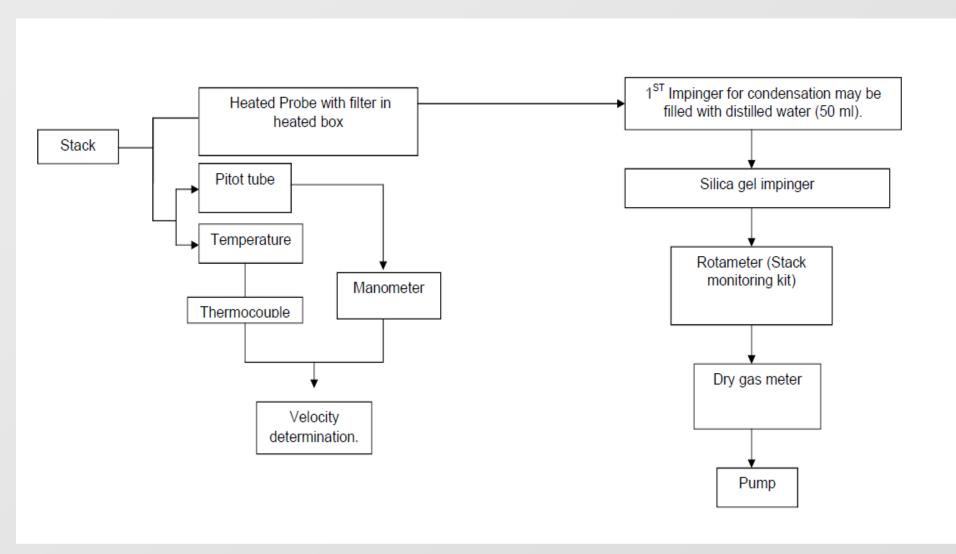
So that Vs= Vn (remember dia of nozzle is known)


Q = An x Vs - (1)

Eq(1) is not quite right, why
we want Q in the stack but it
can stonly be measured outside at
rotameter? Rotameter temp & Pressure
is different - Revise Q

Q = Anx Vs x
$$\left(\frac{T_m}{T_s}\right)\left(\frac{P_{bor}-P_s}{P_{bor}-P_m}\right)$$

Rotumeter


If moisture is trapped

Vm -> Volume of air sampled at meter Vv -> equivalent vapour vol. andensed.

THIMBLE SAMPLING TRAIN

Stack Sampling, Method 5 Thermometer Check, valve Silica gel Reverse-typephot tube Phot manameter Thermometers Impingers Yacuum ine Bypage valve Main valve Dry gas meter

Summary of Stack sampling Procedure for Particulate

Table- 1 Field Data Sheet

Name & Address
Date & time of Sampling
Ambient Temperature °C
Barometric Pressure (mm mercury column)
Moisture in the flue gas (%) flue gas composition (CO₂ %, O₂ %, N₂)
Filter No and weight (Initial as well as Final)

Travers Point	ΔP (mm)	Ts (°K)	Ps	Us (m/s)	Qs (m³/hr)	Rs (LPM)	P _m		P _m Rm Time DGM (m ³ (LPM) (min)		(m³)	Vstd (Nm³)	
							P _{m0}	P _{m1}			Initial	Final	

 Δ P = Stack Gas Velocity Pressure, (mm water column), Ts = Stack temperature (°K),

Ps= Static pressure (mm water column), Us = Velocity of stack gas (m/s),

Qs = Volumetric Flow Rate/ Discharge, Rs = Flow at nozzle (LPM),

P_m = Vaccum Pressure Drop (mm mercury column),

Rm = Determination of sampling rate at gas meter. (LPM),

Vstd = Determination of volume of Gas Sampled

Other required information:

- · Feed rate of hazardous waste
- The nature, composition and quantity of the material being incinerated during monitoring
- · Installed and operating capacity of the incinerator
- · No of sampling ports
- Internal diameter of the stack
- · Nozzle size selected for sampling
- Pitot tube constant
- ID fan capacity
- Pollution control equipment installed and its status
- House keeping

Signature of sample collector	Verified by	Approved by

Occupier/ Representative of the incinerator facility Determine the Dry molecular weight (M_d) by following equation

$$M_d = 0.44 \, (\%CO_2) + 0.32 \, (\%O_2) + 0.28 (\%N_2 + \%CO) +$$